
STUDENT SEMINAR - LECTURE ON SPHERE PACKING

OR LANDESBERG

1. Introduction

This talk will closely follow lecture notes by Henry Cohn [1] with some
additions on coding [2] and Thue’s theorem.

The sphere packing problem asks for the densest packing of congruent spheres
(balls) in Rn. A sphere packing in Rn is a collection P of balls of equal (unit)
radius with non-intersecting interiors. We define the density of a packing
(around 0) to be:

∆ pPq “ lim sup
RÑ8

V ol pBR p0q X
Ť

Pq
V ol pBR p0qq

We define the optimal packing density of Rn as ∆n “ supP ∆ pPq where the
supremum is taken over all sphere packings in Rn.

It can easily be shown that a packing attaining
this supremum always exists, but it is a theorem by
Groemer that there exists an optimal packing for
which the limit convergence is uniform around all
points in Rn.
What are the optimal sphere packings in low dimen-
sions? For n “ 1 one can quickly see that ∆1 “ 1
where P is made of unit spheres with centers at a`2Z
for some a P R. For n “ 2:

Theorem 1.1 (Thue 1910). The hexagonal sphere packing is the densest sphere
packing in R2, with density ∆2 “

π?
12
.

This short proof is due to Hales [3]. Let H be the hexagonal packing. Notice
the plane can be decomposed w.r.t this packing into a collection of equilateral
triangles of side length 2 connecting the centers of tangent balls. Let A be
such a triangle, the area of A is equal

?
3 and around each of its vertices there

is sixth of a circle contained inside A. Therefore the density of H is π?
12

.

Now let P be any sphere packing in R2 with ball centers at txnu
8
n“1. Let P̃

be the collection of balls with centers at txnu and enlarged radius of 2?
3
. Notice

that no three balls have intersecting interiors since the closest any three unit
spheres can be is when forming an equilateral triangle of side length 2 between
the vertices at their centers. In this case the enlarged balls would meet at
exactly one intersection point (the circumcenter of the triangle). For any two
intersecting balls in P̃ draw a segment between the points of intersection of
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their boundaries. Then connect that segment to the centers of each ball to
form two isosceles triangles. Partition the space into three regions:

A Points outside all enlarged balls
B Points inside enlarged balls and outside any triangle
C Points inside a triangle

We will show the density of P in all three regions in less than π?
12

. In region

A, the density is clearly 0. In region B, the density is equal to the ratio of the
area of a ball of radius 1 inside a ball of radius 2?

3
, this is 3

4
which is smaller

than π?
12

. Let’s focus on a triangle in region C, this triangle as two sides of

length 2?
3

with an angle of at most 60˝ between them. We are interested in

the ratio between the area of the unit ball inside the triangle and the are of
the triangle Notice that applying a linear transformation would not change
the ratio between the resulting areas (just a constant multiple to both). By
applying an appropriate transformation one can leave the side lengths fixed
while changing the angle to exactly 60˝, as in the picture below:

Since all radial lines between the two sides have been contracted we deduce
the oval area inside the triangle (the image of the circle) is smaller than the
area of a corresponding circle of unit radius, hence the density is smaller than
π?
12

as required. �

In dimension 3 things get a lot more complicated. It was Kepler who
conjectured in 1611 that no packing packing of balls in R3 is denser than the
cannonball packing, or the face-centered cubic packing, having density π?

18
.

It was only around four hundred years later that
this conjecture was proven by Thomas C. Hales with
the help of a graduate student of his Samuel P. Fer-
guson and about two years of computation! In their
proof the problem was reduced to calculating the
maximal density of around 5,000 different configura-
tions of spheres, each of which was analyzed. The
outcome included more than 250 pages of notes and
3 gigabytes of code and data which have only been
formally verified in 2014 after an additional 11 year
long computation.
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2. Error Correcting Codes

Asking for optimal packings in two and three dimensions is both natural and
clearly useful (e.g. for material science) but what about higher dimensions?
Is it useful to compute ∆1010? Or understand lim infnÑ8 ∆n? Apparently
so! These questions are closely related to the theory of communication over
noisy channels, a discovery of Claude Shannon from 1948 (in his paper ’A
Mathematical Theory of Communication’). Consider an information source
feeding an encoder which transmits discrete code words through a noisy channel.
At the other end of the channel there is a decoder which translates the received
signal (including additional noise):

Every code word s is a point in Rn representing a set of distinct parameters
of the signal being transmitted over a fixed time window T . Denote the sample
rate of the code by W “ n

T
. The communication channel has one natural

limitation which is an upper bound on the average energy of a code word,
this being translated to a restriction that all code words be contained in a
ball of fixed radius P around 0. We shall think of the noise as a random
vector u P Rn (usually normally distributed) added to the code word being
transmitted. Hence the decoder receives at each time window the random
vector r “ s` u. Assume the noise has variance“ σ2 ! P .

An error correcting code is a discrete set of code
words S Ă BP p0q Ă Rn for which a decoder receiving
the vector r “ s`u can uniquely identify s with high
probability. Since }r ´ s} ď ε with high probability
for any σ2 ď ε, such a code can be achieved when
all code words in S are 2ε-separated, thus decreasing
the probability of two words being received the same.
Define the bit-rate of a code S as:

ρpSq “ 1

T
log2 |S|

Hence ε-sphere packings in BP`εp0q lead to error correcting codes. And the
denser the packing the higher the bit-rate. We shall now show the existence of
”good” codes.

Definition 2.1. A saturated packing P in Rn is called saturated if every ball
of unit radius in Rn intersects an element of P. In other words, if no other
unit ball can be added to the packing.

Clearly any sphere packing is contained in a saturated packing. In particular,
there exist saturated sphere packings.
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Proposition 2.1. Every saturated packing in Rn has density at least 2´n.

Proof. Let P be a saturated sphere packing with ball centers txiu. Notice that
every point in Rn is at distance strictly less than 2 from some xi (otherwise P
wouldn’t be saturated). Hence enlarging the balls in P to radius 2 would lead
to Rn “

Ť8

i“1B2pxiq. Since V olpB2pxqq “ 2n ¨ V olpB1pxqq, for every R ą 0 we
have:

V ol pBRp0qq “ V ol

˜

BRp0q X
8
ď

i“1

B2pxiq

¸

ď

8
ÿ

i“1

V ol pBRp0q XB2pxiqq ď

ď

8
ÿ

i“1

2n ¨ V ol pBRp0q XB1pxiqq “ 2n ¨ V ol
´

BRp0q X
ď

P
¯

Divide by 2n ¨ V ol pBRp0qq on both sides to receive desired estimate. �

Corollary 2.2. For any, P, ε, n, T there exists an error correcting code S in
Rn with bit-rate greater than W ¨ log2p1`

P
ε
q ´W .

Proof. Employing proposition 2.1 (and rescaling appropriately) one can con-
struct an error correcting code S of size:

|S| ě 2´n ¨
V olpBP`εp0qqq

V olpBεpxqq
ě 2´n ¨

ˆ

P ` ε

ε

˙n

We receive an estimate of the bit-rate of S:

ρpSq ě 1

T
log2

ˆ

2´n ¨

ˆ

P ` ε

ε

˙n˙

“
n

T
log2

ˆ

1`
P

ε

˙

`
´n

T
“

“ W ¨ log2

ˆ

1`
P

ε

˙

´W

�

Remark.
(1) This is an over simplified and quite inaccurate model. Shannon and

others achieve much stronger and more precise results.
(2) While an exponentially decaying lower bound ∆n ě 2´n might seem

very weak it is apparently not too far from reality. The best known
upper bounds are of the order of 2´p0.5990`opnqq¨n due to Kabatiansky
and Levenshtein. One key to our lack of intuition with regards to high-
dimensional geometry is the unintuitive fact that in high dimensions
volume tends to accumulate at the boundary. Taking some region and
shrinking it by a factor of 1 ´ ε would yield a volume shrinkage of
p1 ´ εqn. Hence ”holes” between spheres tend to be more significant
and gluing of configurations along boundaries tends to be more subtle.

(3) Error correcting codes are often defined nowadays in a vector field over
a finite field, e.g. Fn2 . Such codes correspond in a similar manner to
sphere packing problems defined using the Hamming metric (which
counts the number coordinates two vectors disagree on).
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3. Lattice Packings

The two optimal packings discussed in R2,R3 enjoy a great deal of symmetry.
Is this always the case for optimal packings?
A sphere packing is called periodic if it consists of translated copies of some
(non-trivial) finite configuration. It can easily be seen that periodic packings
can get arbitrarily close to the optimal density (by copying ∆n ´ ε dense
bounded configurations), but there seems to be no reason to believe all optimal
packings are periodic. Lattice packings have even more structure:

Definition 3.1. A lattice in Rn is a discrete subgroup Λ ď Rn with finite
co-volume, i.e. with Rn

{Λ having finite volume.

In Rn this definition is equivalent to Λ being the integer span of n linearly
independent vectors, Λ “ ta1v1 ` ... ` anvn | a1, ..., an P Zu. All currently
proven optimal packings (n “ 1, 2, 3, 8, 24) are lattice packings. This is not
believed to be the case in general.

Define lpΛq “ min0‰vPΛ }v}, the length of the smallest non-zero vector in the
lattice Λ. Placing balls of radius 1

2
lpΛq at every lattice point gives a sphere

packing, PΛ. Such packings are called lattice packings.
For any lattice Λ “ spanZtv1, ..., vnu ď Rn there exists a fundamental

parallelotope:
F “ tx1v1 ` ...` xnvn | xi P r0, 1qu

with the property that any point in Rn is contained in v ` F for exactly one
v P Λ, i.e.:

Rn
“

ğ

vPΛ

v ` F

Notice that each vector in Λ is at the boundary of 2n translates of F .
Accordingly, any ball in PΛ is partitioned into 2n regions each contained in a
different translate of F . Since PΛ is invariant under translations by elements
of Λ one can deduce that each v ` F intersects 2n complimenting parts of a
single ball in the packing. Thus the density of a lattice packing can be easily
computed to be:

∆pPΛq “

V ol
´

B 1
2
lpΛqpxq

¯

V ol pFq
Example 3.1. Taking the cubic lattice Zn ď Rn yields a pretty sparse packing.
lpZnq “ 1

2
and V olpFZnq “ V olpr0, 1snq “ 1 and hence:

∆pPZnq “
π

n
2

pn
2
q! ¨ 2n

where for odd dimensions pn
2
q! means Γp1` n

2
q. This packing is asymptoticly

far inferior to the exponential lower bound of proposition 2.1.

Example 3.2. For n ě 3 the ”checkerboard” lattice gives better densities:

Dn “ tpx1, x2, ..., xnq P Zn | x1 ` x2 ` ...` xn P 2Zu
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The fundamental parallelotope of Dn has volume:

V ol pFDnq “ det

»

—

—

—

—

—

—

—

–

1 0 0 ¨ ¨ ¨ 0 p´1qn`1

1 1 0 ¨ ¨ ¨ 0 0
0 1 1 ¨ ¨ ¨ 0 0

0 0 1 ¨ ¨ ¨
...

...
...

...
... ¨ ¨ ¨ 1 0

0 0 0 ¨ ¨ ¨ 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 2

while lpDnq “
?

2. Therefore:

∆ pPDnq “

V ol
´

B?
2
2

p0q
¯

V ol pFDnq
“
pπ{2q

n
2

2 ¨
`

n
2

˘

!

Actually D3, D4, D5 are the best packings known in their dimensions.

Let’s explore the gaps or holes between the spheres in the Dn lattice packing.
A point x P Rn is considered a hole in a packing if it is a local maximum for
the distance function to the nearest sphere center. Notice that in the case of
lattice packings the holes are invariant under translations by elements of the
lattice. For Dn there are two kinds of holes:

‚ ’shallow’ holes - translates of p1, 0, ..., 0q which have a distance of 1
from the nearest lattice point.

‚ ’deep’ holes - translates of p1
2
, ..., 1

2
,˘1

2
q which have a distance of

b

ř
`

1
2

˘2
“
a

n
4

(these are actually ’deeper’ only when n ą 4).

As one can see the deep holes become deeper as n increases. An interesting
transition happens at n “ 8 where the distance of the deep holes from the
nearest lattice point is

?
2 which is exactly twice the radius of the balls in the

packing! For n “ 8 one can add another translate of D8 at the deep holes and
instantaneously double the density! This new packing is coincidently a lattice
itself and is called the E8 root lattice. In 2016, a Ukrainian mathematician
named Maryna Viazovska proved E8 is the densest packing in R8. Her proof
was relatively short (23 pages).

Remark.
(1) It is amusing to try and imagine the 2-cube r´1, 1sn in high dimensions.

Although all edges of the cube have length 2, the distance of the vertices
to the origin is huge, e.g. dp0, p1, 1, ..., 1qq “

?
n. In some sense this is

why it’s very easy to pack cubes rather than spheres.
(2) A quick remark about the Leech lattice Λ24, the optimal lattice in

R24. Its construction uses an error correcting code called the binary
Golay code which was discovered in 1949. It allows a 12 bit string
to be encoded as a 24 bit string with error of up to 3 bits being
correctable. This code was used for communications with the Voyager
1&2 spacecrafts for sending color pictures of Jupiter and Saturn. The
lattice is also used to give an explicit construction of the Monster Group
the largest sporadic simple group of size « 8 ¨ 1053. The density of Λ24
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is π12

12!
and was shown to be optimal in 2016 (by Cohn, Kumar, Miller

et al.).

The Space of Unimdular Lattices. A lattice Λ ď Rn is called unimodular
if Rn

{Λ has volume 1, or equivalently if the fundamental parallelotope has volume
1. Notice that any lattice can be mapped to a unimodular lattice using scalar
multiplication, a mapping which does not effect the density of the corresponding
sphere packing. Any unimodular lattice Λ “ ta1v1 ` ...` anvn | ai P Zu can
be presented as A ¨ Zn where A P SLnpRq is the matrix with column vectors
pv1, ..., vnq. Hence we have a transitive action of the group SLnpRq on the set
of all unimodular lattices. One can easily see that the stabilizer of the cubic
lattice Zn is the subgroup SLnpZq (verify this is actually a group).
The space of n-dimensional unimodular lattices Xn can thus be identified with
the quotient space:

Xn – SLnpRq{SLnpZq

One can show that there exists an SLnpRq invariant probability measure m
on Xn (or equivalently that SLnpZq is a lattice inside SLnpRq ). The invariance
of m means that for any A P SLnpRq and any measurable function f on Xn:

ż

Xn

fpA ¨ ΛqdmpΛq “

ż

Xn

fpΛqdmpΛq

The probability measure m allows us to talk about random lattices in Rn.
This is apparently useful for achieving a lower bound for the densest lattice
packing.

Theorem 3.3 (Siegel Mean Value Theorem). Let f : Rn Ñ R be a bounded
Borel measurable function of compact support, then:

ż

Xn

ÿ

vPΛzt0u

fpvqdmpΛq “

ż

Rn

fpxqdx

In other words, averaging over all unimodular lattices is the same as averaging
over Rn itself. The idea behind the proof of this theorem is that the measure
defined by the LHS of the equation above is a locally finite (Radon) SLnpRq-
invariant measure on Rn. The only possible measures are constant multiples
of Lebesgue measure and this constant happens to be 1.

Corollary 3.4. There exists a lattice sphere packing in Rn with density at
least 2 ¨ 2´n.

Proof. Let B be a ball of volume 2 in Rn centered at the origin. By applying
the Siegel mean value theorem to the characteristic function of B one can
deduce that the average number of non-zero lattice points contained in B is
equal V olpBq “ 2. Note that since B is symmetric (w.r.t to negation x ÞÑ ´x)
lattice points in B always come in pairs. A positive measure of lattices have
vectors shorter than 1

4
¨ diampBq and thus have more than two non-zero lattice

point contained in B. Since the average number is 2 that means there exist
7



lattices with 0 such points. Attaching translates of 1
2
B at each vertex of such

a lattice gives a packing with a copy of one ball per unit volume and density:

V ol

ˆ

1

2
B

˙

“ 2´n ¨ V olpBq “ 2 ¨ 2´n

as required. �

This corollary improves the previous result both by a factor of 2 and by
assuring it is achieved by a lattice packing.
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